Paper: | SP-P15.9 | ||
Session: | Robustness in Noisy Environments | ||
Time: | Friday, May 21, 15:30 - 17:30 | ||
Presentation: | Poster | ||
Topic: | Speech Processing: Robust Speech Recognition | ||
Title: | SNR-DEPENDENT NON-UNIFORM SPECTRAL COMPRESSION FOR NOISY SPEECH RECOGNITION | ||
Authors: | Kam-keung Chu; City University of Hong Kong | ||
Shu Hung Leung; City University of Hong Kong | |||
Abstract: | It is known that the perceived loudness of a tone signal by human is spectrally masked by background noises. This masking effect causes not only a shift of just-audible sound pressure level of the tone, but also produces a masked loudness function having steeper slope than the unmasked one. This masking property of perceived loudness stimulates us to propose a new mel-scale-based feature extraction method with non-uniform spectral compression for speech recognition in noisy environments. In this method, the speech power spectrum is to undergo a mel-scaled band-pass filtering, as in standard MFCC front-end. However, the energies of the outputs of the filters are compressed by different root values defined by a compression function. This compression function is a function of the SNR in each filter band. Using this new scheme of SNR-dependent non-uniform spectral compression (SNSC) for mel-scaled filter-bank-based cepstral coefficients, substantial improvement is found for recognition in different noisy environments, as compared to the standard MFCC and features derived with cubic root spectral compression. | ||
Back |
Home -||-
Organizing Committee -||-
Technical Committee -||-
Technical Program -||-
Plenaries
Paper Submission -||-
Special Sessions -||-
ITT -||-
Paper Review -||-
Exhibits -||-
Tutorials
Information -||-
Registration -||-
Travel Insurance -||-
Housing -||-
Workshops