Technical Program

Paper Detail

Paper:MLSP-L3.3
Session:Learning Theory and Modeling
Time:Friday, May 21, 16:10 - 16:30
Presentation: Lecture
Topic: Machine Learning for Signal Processing: Bayesian Learning and Modeling
Title: AR MODEL PARAMETER ESTIMATION: FROM FACTOR GRAPHS TO ALGORITHMS
Authors: Sascha Korl; ETH Zürich 
 Hans-Andrea Loeliger; ETH Zürich 
 Allen Lindgren; University of Rhode Island 
Abstract: The classic problem of estimating the parameters of an auto-regressive (AR) model is considered from a graphical-model viewpoint. A number of practical parameter estimation algorithms---most of them well-known, some apparently new---are derived as ``summary propagation'' in a factor graph. In particular, we demonstrate joint estimation of AR coefficients, innovation variance, and noise variance.
 
           Back


Home -||- Organizing Committee -||- Technical Committee -||- Technical Program -||- Plenaries
Paper Submission -||- Special Sessions -||- ITT -||- Paper Review -||- Exhibits -||- Tutorials
Information -||- Registration -||- Travel Insurance -||- Housing -||- Workshops

©2015 Conference Management Services, Inc. -||- email: webmaster@icassp2004.org -||- Last updated Wednesday, April 07, 2004