Technical Program

Paper Detail

Paper:SAM-P2.1
Session:Detection and Estimation
Time:Tuesday, May 18, 15:30 - 17:30
Presentation: Poster
Topic: Sensor Array and Multichannel Signal Processing: Signal detection and estimation
Title: NON EFFICIENCY AND NON GAUSSIANITY OF A MAXIMUM LIKELIHOOD ESTIMATOR AT HIGH SIGNAL TO NOISE RATIO AND FINITE NUMBER OF SAMPLES
Authors: Alexandre Renaux; École Normale Supérieuré de Cachan 
 Philippe Forster; IUT de Ville d'Avray 
 Eric Boyer; École Normale Supérieuré de Cachan 
 Pascal Larzabal; École Normale Supérieuré de Cachan 
Abstract: In estimation theory, the asymptotic efficiency of the Maximum Likelihood (ML) method for independent identically distributed observations and when the number T of observations tends to infinity is a well known result. In some scenarii, the number of snapshots may be small making this result unapplicable. In the array processing framework, for Gaussian emitted signals, we fill this lack at high Signal to Noise Ratio (SNR). In this situation, we show that the ML estimation is asymptotically (with respect to SNR) non efficient and non Gaussian.
 
           Back


Home -||- Organizing Committee -||- Technical Committee -||- Technical Program -||- Plenaries
Paper Submission -||- Special Sessions -||- ITT -||- Paper Review -||- Exhibits -||- Tutorials
Information -||- Registration -||- Travel Insurance -||- Housing -||- Workshops

©2015 Conference Management Services, Inc. -||- email: webmaster@icassp2004.org -||- Last updated Wednesday, April 07, 2004