Technical Program

Paper Detail

Paper:MLSP-P7.4
Session:Pattern Recognition and Classification II
Time:Friday, May 21, 15:30 - 17:30
Presentation: Poster
Topic: Machine Learning for Signal Processing: Signal detection, Pattern Recognition and Classification
Title: BIRD SONG RECOGNITION BASED ON SYLLABLE PAIR HISTOGRAMS
Authors: Panu Somervuo; Helsinki University of Technology 
 Aki Härmä; Helsinki University of Technology 
Abstract: Bird song can be divided into a sequence of syllabic elements. In this paper we investigate the possibility of bird species recognition based on the syllable pair histogram of the song. This representation compresses the variable-length syllable sequence into a fixed-dimensional feature vector. The histogram is computed by means of Gaussian syllable prototypes which are automatically found given the song data and the dissimilarity measure of syllables. Our representation captures the use of the syllable alphabet and also some temporal structure of the song. We demonstrate the method in bird species recognition with song patterns obtained from fifty individuals belonging to four common passerine bird species.
 
           Back


Home -||- Organizing Committee -||- Technical Committee -||- Technical Program -||- Plenaries
Paper Submission -||- Special Sessions -||- ITT -||- Paper Review -||- Exhibits -||- Tutorials
Information -||- Registration -||- Travel Insurance -||- Housing -||- Workshops

©2015 Conference Management Services, Inc. -||- email: webmaster@icassp2004.org -||- Last updated Wednesday, April 07, 2004