Paper: | SP-P1.10 | ||
Session: | Speech Coding for Networks / Single-Channel Speech Enhancement | ||
Time: | Tuesday, May 18, 13:00 - 15:00 | ||
Presentation: | Poster | ||
Topic: | Speech Processing: Speech Enhancement | ||
Title: | ROBUST ADAPTIVE KALMAN FILTERING-BASED SPEECH ENHANCEMENT ALGORITHM | ||
Authors: | Marcel Gabrea; École de Technologie Supérieure | ||
Abstract: | This paper deals with the problem of speech enhancement when only a corrupted speech signal is available for processing. Kalman filtering is known as an effective speech enhancementtechnique, in which speech signal is usually modeled as autoregressive (AR) model and represented in the state-space domain. Various approaches based on the Kalman filter are presented in the literature. They usually operate in two steps: first, additive noise and driving process statistics and speech model parameters are estimated and second, the speech signal is estimated by using Kalman filtering. In this paper sequential estimators are used for sub-optimal adaptive estimation of the unknown a priori driving process and additive noise statistics simultaneously with the system state. The estimation of time-varying AR signal model is based on robust recursive least-square algorithm with variable forgetting factor. The proposed algorithm provides improved state estimates at little computational expense. | ||
Back |
Home -||-
Organizing Committee -||-
Technical Committee -||-
Technical Program -||-
Plenaries
Paper Submission -||-
Special Sessions -||-
ITT -||-
Paper Review -||-
Exhibits -||-
Tutorials
Information -||-
Registration -||-
Travel Insurance -||-
Housing -||-
Workshops